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Motivation

Machine Learning aims to solve several mission
critical tasks

Safe deployment of ML models requires:
* Estimating of prediction uncertainty

* Uncertainty control (rejection)



Selective Classification

Work Outline

Uncertainty Estimation

Bias-Reduced Uncertainty Estimation
for Deep Neural Classifiers (ICLR 19)

Active Learning

Probability Calibration

Selective classification for deep
neural networks (NeurlPS 17)

SelectiveNet: A Deep Neural
Network with an Integrated
Reject Option (ICML 19)

Deep active learning over the
long tail (preprint)

Deep active learning with a
neural architecture search
(under review)

How to Meaningfully Normalize
Any Loss Function (under review)



Deep Neural Networks

* Multiple layers of processing units

* The magic: Hierarchical feature representations
learned by the network

 |n this talk we focus on convolutional neural
networks (CNNs)
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Background - Uncertainty

* Uncertainty has been studied since 1957 [Chow 1957]

e Selective Classification has been studied for various
learning algorithms:

* Support vector Machines [Wiener and El-Yaniv 2012]
* Boosting [Cortes et al. 2016]

* Nearest Neighbours [Hellman 1970]



Motivation - Deep Learning

* Large amount of activational information that can
be transformed to uncertainty

* Many layers
* Many neurons in each layer

e Fach can be viewed as a classifier of a sub-task



Motivation - Deep Learning

* Far from being optimal - example Citar-100
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 For example - an application that requires 95%
accuracy can reduce rejection rate by factor of 2



Motivation - Deep Learning

* Using “distance from decision boundary” works
well for classification

* Regression is an open problem



Confidence Rate Functions

e For a classifier f ,\We seek for a confidence rate
function k¢ that reflects loss monotonicity

k(z1, Or(2)|f) < k(2,95 (2)|f) <= Prpelir(z1) # y1] > Prp[js(v2) # yol
 We discuss three existing candidates:
e Softmax response
« MC-Dropout

 Nearest neighbours distance



Confidence - Softmax Response

 SImply take ~ to be the Softmax output

<5 2 max(f(z]))

* Retlects the classification margin

* Other variants - Entropy, max-2nd activation

Cat Dog Deer Giraffe



Confidence - MC-Dropout

* Apply dropout at inference

* Estimate prediction variance over numerous (100)
forward passes with dropout (p=0.5)

 |ntuition - kind of ensemble variance

(a) Standard Neural Nec (b) After applying dropout.

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning.”



Confidence - NN Distance

* Run nearest neighbours on the embedding space

e Extract scores from in-class vs out-class distances
among the k nearest neighbours
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Mandelbaum, Amit, and Daphna Weinshall. "Distance-based Confidence Score for Neural
Network Classifiers." arXiv preprint arXiv:1709.09844 (2017).



Statistical Learning

* Underlying unknown distribution P(X,Y)
* Alabeled set S, = {(z,y)}" ~ P

 Qur goalistofind f € F that minimizes the risk:

R(f) £ Ep[t(f(x),y)]



Selective Classification

 Selective Classifier is a pair ([, g)

_ [ f@) 1 olx) = 1
(f,9)(x) = <\ don’t know, if g(z) = 0.

* Coverage:

o(f,9) = Eplg(x)]

o Eplt(f(2). y)9(z)]

+ Risk:  R(f,g) 7

Ran El-Yaniv, and Yair Wiener. "On the foundations of noise-free selective classification."



Selective Classification
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Knowledge




Knowledge

“Reports that say that something hasn't happened are always interesting to me, because as we
know, there are known knowns; there are things we know we know. We also know there are known
unknowns; that is to say we know there are some things we do not know. But there are also
unknown unknowns—the ones we don't know we don't know. And if one looks throughout the

history of our country and other free countries, it is the latter category that tend to be the difficult
ones.” Donald Rumsfeld



From Uncertainty to
Selective Classifier

* A selective classitier can be obtained by
thresholding the confidence rate function

1, if ke(z) > 6;
0, otherwise.
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* Given a set S,,, we can derive a family of 9
functions based on all the possible thresholds 6 .



Selection with Guaranteed Risk
(SGR)

* A selective classifier obtained by thresholding the
confidence rate function

1, if ke(z) > 6;
0, otherwise.
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* Given a training set 5., , a desired risk r*, and a
confidence parameter ¢, the SGR algorithm find a
selective classitier such that:

Prs {R(f,g)>r"} <9



Lemma 1 - Binomial Talil

* Let B*(7;,0,5,,) bethe solution b of the following
eqguation
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Prs, {R(f|P) > B*(7i,0,5m)} <9

O. Gascuel and G. Caraux. Distribution-free performance bounds with the resubstitution
error estimate.



Probability
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Langford, John. "Tutorial on practical prediction theory for classification."



SGR Algorithm

For a given training set S ~ P(X,Y) a desired
risk 7° and a confidence parameter ¢

set k= [log(m)]

Use binary searchto find 0 € {x(z):2z € S,,}
such that B*(79,0/k,Sp) <r”



SGR Algorithm
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Theorem 1 - SGR Generalization
bound
Theorem: For an application of SGR on Sy, ~ P(X,Y)
with a given »* and ¢, the output (f, 9x) Satisfies
Prs {R(f,g) >r"} <é




Theorem 1 - SGR Generalization
bound - Proof Sketch

e On each iteration
Prs, AR(f,9:) > B"(7,0,5m)} < 0/k

* Due to the binary search
i : B*(75,0,9,) <r”

* An application of the union bound among iterations
complete the proot



SGR Algorithm

* A generalization bound for DNNs

* The tightest bound possible (without other
assumptions)

* Can be applied on a pre-trained network



Experimental Setting

e Datasets:
e CIFAR-10-VGG-16
e CIFAR-100 - VGG-16

* IMAGENET - VGG-16 + Resnet-50 (top1 and top 5)



Experiments - RC-curve - CIFAR-10
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Experiments - RC-curve - Cifar-100
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Experiments - RC-curve Imagenet
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 CIFAR-10-VGG-16

Experiments - SGR

Desired risk (r*) Trainrisk Train coverage Testrisk Test coverage Risk bound (b*)
0.01 0.0079 0.7822 0.0092  0.7856 0.0099
0.02 0.0160 0.8482 0.0149  0.8466 0.0199
0.03 0.0260 0.8988 0.0261 0.8966 0.0298
0.04 0.0362 0.9348 0.0380  0.9318 0.0399
0.05 0.0454 0.9610 0.0486  0.9596 0.0491
0.06 0.0526 0.9778 0.0572  0.9784 0.0600
* IMAGENET - top 5 with Resnet-50
Desired risk (r*) Trainrisk Train coverage Testrisk Testcoverage Risk bound(b*)
0.01 0.0080 0.3796 0.0085 0.3807 0.0099
0.02 0.0181 0.5938 0.0189 0.5935 0.0200
0.03 0.0281 0.7122 0.0273 0.7096 0.0300
0.04 0.0381 0.8180 0.0358 0.8158 0.0400
0.05 0.0481 0.8856 0.0464  0.8846 0.0500
0.06 0.0581 0.9256 0.0552 0.9231 0.0600
0.07 0.0663 0.9508 0.0629 0.9484 0.0700




SelectiveNet



Background

We saw how to transform a classitier to be a
selective classitier using threshold over prediction
uncertainty

Can there be better uncertainty estimation
Motivation - Test with 5/10 questions

Joint optimization:

0" = arg g%lg(R(fea go))

s.t. p(gg) > c.
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Optimization

* |nspired by interior point methods (IPM)

* Constrained optimization problem:

0" = arg lgélél(R(fe, 90))

s.t. ¢(ge) > c.

* Unconstrained objective:

Lirg) = Pe(f,91Sm) + A¥(c — &(9|Sm))
¥(a) = max(0,a)’




Auxiliary output

* In low coverage rate the effective training set size
IS reduced

* Auxiliary output is added as regularisation for
representation learning based on all points

Ly, = #(h|Sp) Zé (i), yi)

e Combined with the selective risk:

L = Ozﬁ(fjg) -+ (1 — Oé)ﬁh



w o ~J

S

Selective risk (%)

p—

)

N W

Empirical Results

m SelectiveNet
e SR

0.70 075 0.80 0.85 090 0.95
Coverage

(a) Cifar-10

1.00

Selective risk (%)

©C = =B M h b Ww
w oo v o u o u

m SelectiveNet
SR

0.80 0.85 0.90
Coverage

(b) Cats vs. dogs

0.95

1.00




Empirical Results - Regression
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Embedding Analysis

airplanes
automobile
bird

(a) SelectiveNet (b) Softmax response (c) Legend

ectiveNet does not “invest” representational

pacity on rejected instances



Thresholds VS SelectiveNet

Thresholds :
SelectiveNet
(MC-dropout, SR) v

X v
x(CostIy) \/

SOTA results

Regression
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Various coverage rates



Questions?



Publications and work in progress

Uncertainty:

« Geifman, Yonatan, Guy Uziel, and Ran El-Yaniv. “Bias-Reduced Uncertainty Estimation for Deep Neural
Classifiers." International conference on Learning Representation (ICLR 2019)

Selective Classification:

* Geifman, Yonatan, and Ran El-Yaniv. "Selective classification for deep neural networks." Advances in neural
information processing systems. 2017 .

* Geifman, Yonatan, and Ran El-Yaniv. “SelectiveNet: A Deep Neural Network with an Integrated Reject
Option" International Conference on Machine Learning (ICML 2019)

Active Learning:

* Geifman, Yonatan, and Ran El-Yaniv. 'Deep Active Learning over the Long Tail." arXiv preprint arXiv:
1711.00941 (2017).

* Geifman, Yonatan, and Ran El-Yaniv. 'Deep Active Learning with a Neural Architecture Search." Under
review.

Performance evaluation

* Ran El-Yaniv, Yonatan Geifman*, Yair Wiener. “How to Meaningfully Normalize any Loss Function” under
review



