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The Story of Alice and Bob




High Level Overview

* Motivation - Test with choice of 5 out of 10 questions
* Bob - study all 10 chapters, decide at test time
* Alice - study the easiest 5 chapters.

* Questions:
* Which one is better?

e How can Alice know which are easier?



Supervised Learning

* Underlying unknown distribution P(X,Y)
* Alabeled set S, = {(z,y)}" ~ P

 Qur goalistofind f € F that minimizes the risk:

R(f) £ Ep[t(f(x),y)]



Selective Classification

 Selective Classifier is a pair ([, g)

_ [ f@) 1 olx) = 1
(f,9)(x) = <\ don’t know, if g(z) = 0.

* Coverage:

o(f,9) = Eplg(x)]

. Selective risk: R(f.g) 2 EPV(%’; E?ﬁ)g(z)],

Ran El-Yaniv, and Yair Wiener. "On the foundations of noise-free selective classification."
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Confidence Rate Functions

e For a classifier f \We seek for a confidence rate
function K that reflects loss monotonicity

k(z1]f) < k(xe|f) <= Prp[f(z1) # y1] = Prp|f(x2) # y2]

K isonly ranking (not probabilities)

Geifman & El-Yaniv - "Selective classification for deep neural networks” NeurlPS 17



Confidence - Softmax Response

 Simply take ~ to be the Softmax Response (SR)

<5 2 max(f(z]))

* Retlects the classification margin

* Other variants - Entropy, max minus 2nd
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Confidence - MC-Dropout

* Apply dropout at inference

* Estimate prediction statistics over numerous
forward passes with dropout

(a) Standard Neural Net (b) After applying dropout.

Gal & Ghahramani. "Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning."



From Uncertainty to
Selective Classifier

* A selective classitier can be obtained by
thresholding the confidence rate function

1, if ke(z) > 6;
0, otherwise.
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e Selection of 6 is based on a validation set

Geifman & El-Yaniv - "Selective classification for deep neural networks™ NeurlPS 17
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SR or MC-dropout?
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Softmax Response is Not Optimal

“Easy" Points

0.024-
\

0.022- \&
0.020-
\/X
0.018- -
0.016- //AW\ T

v

-/

75 100 125 150 175
Moaodel snapshot jl'l

200

225

“Hard” Points

0.29
0.281
0.271
2 0.26
-
<0.25"
LJ
024
0.231
0.22
0.21

100 150 200
Model snapshot fl?

Geifman & El-Yaniv - “Bias-Reduced Uncertainty Estimation for deep neural

classifiers” ICLR 19



SelectiveNet




SelectiveNet

Dog
Cat
Deer

-
O
H
—
©

QL

had
al




SelectiveNet

S
1= Dog
L Cat
8 Deer
-
o

[0,1]

c
O
HE

O
D)

QL
A




Optimization

* |nspired by interior point methods (IPM)

* Constrained optimization problem:

0" = arg lé%lél(R(fea g0))

s.it. p(gg) > c.

* Unconstrained objective:

Lirg) = (f,915m) + AU (c — d(g|Sm))
¥(a) = max(0, a)?

o i LS (2d), i) g (i)

7g(fag‘sm) — &(9!5 )




The Story of Alice and Bob




Back to Bob and Alice

» How can we learn ¢ before f is converged?
 How can Alice choose which 5 chapters to study?

 Can we get "world knowledge” from the rejected part”
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Auxiliary output

In low coverage the effective training set size is reduced
We can learn “world knowledge” from rejected instances

Auxiliary output Is added as regularisation for
representation learning based on the entire domain
1 m

Ly, =7(h|Sm) = — > L(h(z:), y:)

m -
1=1

Combined with the selective risk:

L = Ozﬁ(f’g) -+ (1 — Oz)ﬁh
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Empirical Results

Cats vs. Dogs
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Selective risk (MSE)

Empirical Results - Regression

Concrete Compressive Strength (UCI)
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Embedding Analysis

SelectiveNet Threshold
g
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ectiveNet does not “invest” representational

pacity on rejected instances
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Conclusion

* Improved results compared to SR and MC-dropout
* No need of additional training set for calibration

* Selective regression with fast inference
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