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INTRODUCTION

Consider an imbalanced problem 

Does 99% accuracy is good enough? 

When the minority class is only 0.5%? 

Can 70% accuracy on multi-class with 3 classes can be compared to 
70% with 4 classes? 

Haberman – a dataset with 26.4% of minority class with reported 
results of 27% 

We are looking for a universal measure that can obtain the complexity 
and the bias of the problem.
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MAIN IDEA

Lets obtain the performance advantage of the prediction 
function over the ”random” function 

Challenges: 

What is the “random classifier” 

How can we compare 2 classifiers? Which loss? Subtract? 
Divide? 

Does it general for regression and classification? For any 
loss function?
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PREDICTION ADVANTAGE
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PA`(f) = 1� R`(f)

R`(f0)
= 1� EX,Y (`(f(X), Y ))

EX,Y (`(f0(X), Y )
.
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BAYESIAN MARGINAL PREDICTION (BMP)

The optimal prediction function with respect to the 
marginal distribution of Y. 

The BMP predicts a constant value/class while being 
oblivious to X and P(Y|X ). 

 we expect the BMP to obtain only the complexity of the 
problem latent in P(Y).
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THE BMP IS CONSTANT

Why the BMP is a constant? 

Yaw principal 

Lemma: Consider a general function g~Q and a convex 
loss function
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PREDICTION ADVANTAGE - PROPERTIES

Order preservation - The PA forms a weak ordering of the 
functions, similar to the order formed by the loss function 

Boundedness - the PA is bounded by 1. PA=1 achieved 
only by the perfect classifier. 

Meaningfulness - PA=0 when f has no advantage over the 
BMP
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Cross-entropy loss - 

Multi class problem with k classes  

The BMP is the marginal probabilities for each class 

Labels are given in one-hot representation
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PA FOR CROSS ENTROPY LOSS
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`(f(X), Y ) = �
X

i2C

Pr{Y = i} log (Pr{f(X) = i})

f(x) : X ! R

k

f0(X)i = P{Y = ei}



Lets define an arbitrary distribution Q and 
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PA FOR CROSS ENTROPY LOSS - PROOF
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fQ(X) ⇠ Q

R`(fQ) = E`(fQ(X), Y )

=

X

i2C

Pr{Y = ei}`(fQ(X), ei)

=

X

i2C

�Pr{Y = ei} log (fQi(X))

R`(f0) = E`(f0(X), Y )

=

X

i2C

Pr{Y = ei}`(f0(X), ei)

=

X

i2C

�Pr{Y = ei} log (Pr{Y = ei})

= H(Y )



We calculate:  

The BMP loss: 

The PA:
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PA FOR CROSS ENTROPY LOSS - PROOF
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R`(fQ)�R`(f0)

R`(fQ)�R`(f0) =

X

i2C

�Pr{Y = ei} log (fQi) +

X

i2C

Pr{Y = ei} log (Pr{Y = ei})

=

X

i2C

Pr{Y = ei} log (Pr{Y = ei}/fQi(X))

= Dkl(f0(X)||fQ(X))

� 0.

R`(f0) = H(P (Y ))

PA`(f) = 1� R`(f)

H(P (Y ))
.



The BMP: 

The BMP risk: 

The PA:
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PA FOR 0/1 LOSS
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f0 = argmaxi(Pr{Y = i})

R`0�1(f0) = 1�max

i2C
(Pr{Y = i}) = 1� Pr{Y = j}.

PA`(f) = 1� R`(f)

R`(f0)
= 1� R`(f)

1�maxi2C(Pr{Y = i})



The BMP 

The BMP risk: 

The PA:
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PA FOR SQUARED LOSS 
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R`(f0) = EY [(Y � f0)2] = EY [(Y � E[Y ])2] = var(Y )

PA`(f) = 1� R`(f)

R`(f0)
= 1� R`(f)

var(Y )

f0 = E[Y ]



The BMP for absolute loss: 

The BMP risk: 

The PA:
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PA FOR ABSOLUTE LOSS 
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f0 = median(Y )

R`(f0) = EY [|Y �median(Y )|] = Dmed

PA`(f) = 1� R`(f)

R`(f0)
= 1� R`(f)

Dmed
.
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RELATION TO OTHER MEASURES

Some other measures defined as two numbers (e.g., 
precision recall), we look for one number 

We compared to F-score, Cohen’s kappa, and balanced 
accuracy 

The PA bounds from below all the other measures
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EMPIRICAL RESULTS

We compared some relevant performance measure on 
different noise levels and imbalance levels on the breast 
cancer dataset 

Measures: 

Balanced accuracy - (TP+TN)/2 

F-measure - harmonic mean of precision and recall 

Cohen’s kappa - inter-rater agreement measure
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EMPIRICAL RESULTS
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EMPIRICAL RESULTS
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EMPIRICAL RESULTS
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EMPIRICAL RESULTS
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TEXT

PA AND SELECTIVE PREDICTION

In selective prediction for every coverage rate we have 
different P(Y) 

Risk-coverage curves are misleading 

We argue that in this case the objective has to be the PA 
and we should measure the PA-coverage curve 

Still not clear how to construct a reject mechanism which 
optimize PA
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CONCLUSION AND FUTURE WORK

We presented a universal performance measure 

It is still not clear how to best estimate some of the 
measures (entropy, median, etc…) 

Does the PA can be used as an optimization objective? 
where is it needed? how to optimize it? (non convex)
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