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Motivation

e Safe deployment of ML models for mission critical
tasks is challenging

e Safe deployment requires:
* Uncertainty estimation

* Uncertainty control



Outline

 Preliminaries and definitions
e Selective classification for DNNs

e SelectiveNet
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Deep Neural Networks
* Multiple layers of processing units

* Feature representations learned at each layer
* Low level features to high level

 |n this work we focus on convolutional neural
networks
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Uncertainty in Deep Learning

* Interpretability of deep learning models - open problem
e Statistical uncertainty

e Bayesian - infeasible for large problems

* Bootstrap - infeasible
e Other methods -

* Decision boundary

« Bayesian/bootstrap approximations



Statistical Learning

* Underlying unknown distribution P(X,Y)
* Alabeled set S, = {(z,y)}" ~ P

 Qur goalistofind f € F that minimizes the risk:

R(f) £ Ep[t(f(x),y)]



Confidence Rate Functions

e For a classifier f ,\We seek for a confidence rate
function k¢ that reflects loss monotonicity

k(z1, Or(2)|f) < k(2,95 (2)|f) <= Prpelir(z1) # y1] > Prp[js(v2) # yol
 We discuss three existing candidates:
e Softmax response
« MC-Dropout

 Nearest neighbours distance



Confidence - Softmax Response

 SImply take ~ to be the Softmax output

<5 2 max(f(z]))

* Retlects the classification margin



Confidence - MC-Dropout

* Apply dropout at inference

* Estimate prediction variance over numerous (100)
forward passes with dropout (p=0.5)

 |ntuition - kind of ensemble variance

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning.”



Confidence - NN Distance

* Run nearest neighbours on the embedding space

e Extract scores from in-class vs out-class distances
among the k nearest neighbours
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Mandelbaum, Amit, and Daphna Weinshall. "Distance-based Confidence Score for Neural
Network Classifiers." arXiv preprint arXiv:1709.09844 (2017).
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Selective Classification

 Selective Classifier is a pair ([, g)

_ [ f@) 1 olx) = 1
(f,9)(x) = <\ don’t know, if g(z) = 0.

* Coverage:

o(f,9) = Eplg(x)]

o Eplt(f(2). y)9(z)]

+ Risk:  R(f,g) 7

Ran El-Yaniv, and Yair Wiener. "On the foundations of noise-free selective classification."



Selective Classification
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From Uncertainty to
Selective Classifier

* A selective classitier can be obtained by
thresholding the confidence rate function

1, if ke(z) > 6;
0, otherwise.
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* Given a set S,,, we can derive a family of 9
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Selection with Guaranteed Risk
(SGR)

* A selective classifier obtained by thresholding the
confidence rate function

1, if ke(z) > 6;
0, otherwise.
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* Given a training set 5., , a desired risk r*, and a
confidence parameter ¢, the SGR algorithm find a
selective classitier such that:

Prs {R(f,g)>r"} <9



Lemma 1 - Binomial Talil

* Let B*(7;,0,5,,) bethe solution b of the following
eqguation
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Prs, {R(f|P) > B*(7i,0,5m)} <9

O. Gascuel and G. Caraux. Distribution-free performance bounds with the resubstitution
error estimate.
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Lemma 1 - Binomial Talil

True Error Bound
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Langford, John. "Tutorial on practical prediction theory for classification."



SGR Algorithm

For a given training set S ~ P(X,Y) a desired
risk 7° and a confidence parameter ¢

set k= [log(m)]

Use binary searchto find 0 € {x(z):2z € S,,}
such that B*(79,0/k,Sp) <r”



SGR Algorithm
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SGR Algorithm

* A generalization bound for DNNs
* [he tightest bound possible

 Can be applied on a pre-trained network



Experimental Setting

e Datasets:
e CIFAR-10-VGG-16
e CIFAR-100 - VGG-16

* IMAGENET - VGG-16 + Resnet-50 (top1 and top 5)



Experiments - RC-curve - CIFAR-10
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Experiments - RC-curve - Cifar-100
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Experiments - RC-curve Imagenet
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 CIFAR-10-VGG-16

Experiments - SGR

Desired risk (r*) Trainrisk Train coverage Testrisk Test coverage Risk bound (b*)
0.01 0.0079 0.7822 0.0092 0.7856 0.0099
0.02 0.0160 0.8482 0.0149 0.8466 0.0199
0.03 0.0260 0.8988 0.0261 0.8966 0.0298
0.04 0.0362 0.9348 0.0380 0.9318 0.0399
0.05 0.0454 0.9610 0.0486 0.9596 0.0491
0.06 0.0526 0.9778 0.0572 0.9784 0.0600
* IMAGENET - top 5 with Resnet-50
Desired risk (*) Trainrisk Train coverage Testrisk Test coverage Risk bound(b*)
0.01 0.0080 0.3796 0.0085 0.3807 0.0099
0.02 0.0181 0.5938 0.0189 0.5935 0.0200
0.03 0.0281 0.7122 0.0273 0.7096 0.0300
0.04 0.0381 0.8180 0.0358 0.8158 0.0400
0.05 0.0481 0.8856 0.0464 0.8846 0.0500
0.06 0.0581 0.9256 0.0552 0.9231 0.0600
0.07 0.0663 0.9508 0.0629 0.9484 0.0700




SelectiveNet

* Learn / and 9 together
* Motivation - Test with 5 out of 10 questions

* Minize selective risk with coverage constraint:

0" = arg ggg(R(fe, go))

s.t. ¢(ge) = c.

Eplt(f(z),y)g(x)]

Rif.9)= o(9g)




SelectiveNet

Prediction
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Optimization

* |nspired by interior point methods (IPM)

* Constrained optimization problem problem:

0* = arg lgélél(R(fea g6))

s.t. p(ge) > c.
* Unconstrained empirical objective:

Lit.gy = Te(f,9]Sm) + A¥(c — &(Q‘Sm))
¥(a) = max(0,a)?




Auxiliary output

* In low coverage rate the effective training set size
IS small

* Auxiliary output is added as regularisation for
representation learning based on all points

Ly = 7(h|Sm) Zf (1), i)

e Combined with the selective risk:
L = Oé[,(f,g) T (1 — Oz)ﬁh
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Embedding Analysis
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(a) SelectiveNet (b) Softmax response (c) Legend

» SelectiveNet does not “waste” representational
capacity on rejected instances




Conclusion

SelectiveNet optimize a selective classitier end-to-
end

No hold-out set / validation set
First feasible solution for regression

Current SOTA In deep selective classification



Questions?
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