Uncertainty and its Applications in Deep Neural Networks

Yonatan Geifman Technion

Motivation

- Safe deployment of ML models for mission critical tasks is challenging
- Safe deployment requires:
 - Uncertainty estimation
 - Uncertainty control

Outline

- Preliminaries and definitions
- Selective classification for DNNs
- SelectiveNet

Uncertainty

Uncertainty Estimation

Selective Classification

Active Learning

Calibration

Deep Neural Networks

- Multiple layers of processing units
- Feature representations learned at each layer
- Low level features to high level
- In this work we focus on convolutional neural networks

Uncertainty in Deep Learning

- Interpretability of deep learning models open problem
- Statistical uncertainty
 - Bayesian infeasible for large problems
 - Bootstrap infeasible
- Other methods -
 - Decision boundary
 - Bayesian/bootstrap approximations

Statistical Learning

- Underlying unknown distribution P(X,Y)
- A labeled set $S_m = \{(x,y)\}^m \sim P$
- Our goal is to find $f \in \mathcal{F}$ that minimizes the risk:

$$R(f) \triangleq E_P[\ell(f(x), y)]$$

Confidence Rate Functions

• For a classifier f, We seek for a confidence rate function κ_f that reflects loss monotonicity

$$\kappa(x_1, \hat{y}_f(x)|f) \le \kappa(x_2, \hat{y}_f(x)|f) \iff Pr_P[\hat{y}_f(x_1) \ne y_1] \ge Pr_P[\hat{y}_f(x_2) \ne y_2]$$

- We discuss three existing candidates:
 - Softmax response
 - MC-Dropout
 - Nearest neighbours distance

Confidence - Softmax Response

• Simply take κ to be the Softmax output

$$\kappa_f \triangleq \max_{j \in \mathcal{Y}} (f(x|j))$$

Reflects the classification margin

Confidence - MC-Dropout

- Apply dropout at inference
- Estimate prediction variance over numerous (100) forward passes with dropout (p=0.5)
- Intuition kind of ensemble variance

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning."

Confidence - NN Distance

- Run nearest neighbours on the embedding space
- Extract scores from in-class vs out-class distances among the k nearest neighbours

$$D(x) = \frac{\sum_{j=1, y^j = \hat{y}}^k e^{-||f(x) - f(x_{train}^j)||_2}}{\sum_{j=1}^k e^{-||f(x) - f(x_{train}^j)||_2}}$$

Selective Classification

Knowledge

Knowledge

Known knowns Known unknowns

Unknown unknowns

Selective Classification

• Selective Classifier is a pair (f,g)

$$(f,g)(x) = \begin{cases} f(x), & \text{if } g(x) = 1; \\ \text{don't know}, & \text{if } g(x) = 0. \end{cases}$$

Coverage:

$$\phi(f,g) \triangleq E_P[g(x)]$$

• Risk: $R(f,g) \triangleq \frac{E_P[\ell(f(x),y)g(x)]}{\phi(f,g)}$.

Selective Classification

From Uncertainty to Selective Classifier

 A selective classifier can be obtained by thresholding the confidence rate function

$$g_{\theta}(x) \triangleq \begin{cases} 1, & \text{if } \kappa_f(x) \ge \theta; \\ 0, & \text{otherwise.} \end{cases}$$

• Given a set S_m , we can derive a family of g functions based on all the possible thresholds θ .

Selection with Guaranteed Risk (SGR)

 A selective classifier obtained by thresholding the confidence rate function

$$g_{\theta}(x) \triangleq \begin{cases} 1, & \text{if } \kappa_f(x) \ge \theta; \\ 0, & \text{otherwise.} \end{cases}$$

• Given a training set S_m , a desired risk r^* , and a confidence parameter δ , the SGR algorithm find a selective classifier such that:

$$Pr_{S_m} \{ R(f, g) > r^* \} < \delta$$

Lemma 1 - Binomial Tail

• Let $B^*(\hat{r}_i, \delta, S_m)$ be the solution b of the following equation

$$\sum_{j=0}^{m \cdot \hat{r}(f|S_m)} {m \choose j} b^j (1-b)^{m-j} = \delta.$$

Then

$$Pr_{S_m}\{R(f|P)>B^*(\hat{r}_i,\delta,S_m)\}<\delta$$

O. Gascuel and G. Caraux. Distribution-free performance bounds with the resubstitution error estimate.

Lemma 1 - Binomial Tail

Langford, John. "Tutorial on practical prediction theory for classification."

SGR Algorithm

- For a given training set $S_m \sim P(X,Y)$, a desired risk r^* and a confidence parameter δ
- set $k = \lceil \log(m) \rceil$
- Use binary search to find $\hat{\theta} \in \{\kappa(x) : x \in S_m\}$ such that $B^*(\hat{r}_{\theta}, \delta/k, S_m) \leq r^*$

SGR Algorithm

SGR Algorithm

- A generalization bound for DNNs
- The tightest bound possible
- Can be applied on a pre-trained network

Experimental Setting

- Datasets:
 - CIFAR-10 VGG-16
 - CIFAR-100 VGG-16
 - IMAGENET VGG-16 + Resnet-50 (top1 and top 5)

Experiments - RC-curve - CIFAR-10

Experiments - RC-curve - Cifar-100

Experiments - RC-curve Imagenet

Experiments - SGR

CIFAR-10 - VGG-16

Desired risk (r^*)	Train risk	Train coverage	Test risk	Test coverage	Risk bound (b^*)
0.01	0.0079	0.7822	0.0092	0.7856	0.0099
0.02	0.0160	0.8482	0.0149	0.8466	0.0199
0.03	0.0260	0.8988	0.0261	0.8966	0.0298
0.04	0.0362	0.9348	0.0380	0.9318	0.0399
0.05	0.0454	0.9610	0.0486	0.9596	0.0491
0.06	0.0526	0.9778	0.0572	0.9784	0.0600

• IMAGENET - top 5 with Resnet-50

	Desired risk (r^*)	Train risk	Train coverage	Test risk	Test coverage	Risk bound(b*)
	0.01	0.0080	0.3796	0.0085	0.3807	0.0099
	0.02	0.0181	0.5938	0.0189	0.5935	0.0200
	0.03	0.0281	0.7122	0.0273	0.7096	0.0300
	0.04	0.0381	0.8180	0.0358	0.8158	0.0400
	0.05	0.0481	0.8856	0.0464	0.8846	0.0500
	0.06	0.0581	0.9256	0.0552	0.9231	0.0600
	0.07	0.0663	0.9508	0.0629	0.9484	0.0700

SelectiveNet

- Learn f and g together
- Motivation Test with 5 out of 10 questions
- Minize selective risk with coverage constraint:

$$\theta^* = \arg\min_{\theta \in \Theta} (R(f_{\theta}, g_{\theta}))$$

$$s.t. \ \phi(g_{\theta}) \ge c.$$

$$R(f,g) = \frac{E_P[\ell(f(x),y)g(x)]}{\phi(g)}$$

SelectiveNet

Optimization

- Inspired by interior point methods (IPM)
- Constrained optimization problem problem:

$$\theta^* = \arg\min_{\theta \in \Theta} (R(f_{\theta}, g_{\theta}))$$

s.t.
$$\phi(g_{\theta}) \geq c$$
.

Unconstrained empirical objective:

$$\mathcal{L}_{(f,g)} = \hat{r}_{\ell}(f,g|S_m) + \lambda \Psi(c - \hat{\phi}(g|S_m))$$

$$\Psi(a) = \max(0,a)^2$$

$$\hat{r}(f, g|S_m) = \frac{\frac{1}{m} \sum_{i=1}^{m} \ell(f(x_i), y_i) g(x_i)}{\hat{\phi}(g|S_m)}$$

Auxiliary output

- In low coverage rate the effective training set size is small
- Auxiliary output is added as regularisation for representation learning based on all points

$$\mathcal{L}_h = \hat{r}(h|S_m) = \frac{1}{m} \sum_{i=1}^m \ell(h(x_i), y_i)$$

Combined with the selective risk:

$$\mathcal{L} = \alpha \mathcal{L}_{(f,g)} + (1 - \alpha) \mathcal{L}_h$$

Empirical Results

Embedding Analysis

 SelectiveNet does not "waste" representational capacity on rejected instances

Conclusion

- SelectiveNet optimize a selective classifier end-toend
- No hold-out set / validation set
- First feasible solution for regression
- Current SOTA in deep selective classification

Questions?

Publications and work in progress

• Uncertainty:

- Geifman, Yonatan, Guy Uziel, and Ran El-Yaniv. "Bias-Reduced Uncertainty Estimation for Deep Neural Classifiers." International conference on Learning Representation (ICLR 2019)
- Selective Classification:
 - Geifman, Yonatan, and Ran El-Yaniv. "Selective classification for deep neural networks." *Advances in neural information processing systems*. 2017.
 - Geifman, Yonatan, and Ran El-Yaniv. "SelectiveNet: A Deep Neural Network with an Integrated Reject Option" International Conference on Machine Learning (ICML 2019)
- Active Learning:
 - Geifman, Yonatan, and Ran El-Yaniv. "Deep Active Learning over the Long Tail." arXiv preprint arXiv: 1711.00941 (2017).
 - Geifman, Yonatan, and Ran El-Yaniv. "Deep Active Learning with a Neural Architecture Search." *Under review*.
- Performance evaluation
 - Ran El-Yaniv, Yonatan Geifman*, Yair Wiener. "How to Meaningfully Normalize any Loss Function" under review